All About Ultra Violet Testers

Testing with Ultra Violet (UV) Light
How UV works, blacklight, wavelengths explained, several UV torches reviewed

BUY NOW: CLICK ON A PICTURE
New - shortwave UV for decontamination of viruses incl. COVID
 
Also, UV jewellers loupe

 

CONTENTS

Using UV to kill viruses and Decontamination UV for COVID

Plain-English summary of using UV light to check antiques etc

Technical explanation

UV safety

Products, and photos to illustrate the effects

More examples of what you see under UV light

USING UV LIGHT TO KILL VIRUSES

Read this article to about how this works

Shortwave UV kill viruses. Small lights (typically used for gemstones and minerals) are encased in a 'viewing box' for safety. Large lights (for 'cleaning' an area of viruses) must have safety features such as a cut-out if someone approaches, a remote control to operated it at a distance, a timer, safety glasses and audio warnings- we do sell one of these (ref. UV-sterilization) - scroll down for full details.

It is well-established that shortwave UV lights (254nm) kills bacteria and viruses, they are used:

- in the food packaging industry (UV-treated foods last longer)
- in pipes supplying water to tropical fish tanks and garden ponds
- in air-conditioners
- as a small light positioned very close to switches (e.g. the buttons in a lift)
- carefully placed on ceilings (you need to know which way the air flows through the room)
- in cabinets for steralising anything (anything that will fit in he cabinet)
- as automatic ceiling lights that come on when nobody is in the room (e.g. washrooms and toilet cubicles)
- for use in rooms, especially empty premises after hours (e.g. kitchens and offices).

Most UV torches are longwave (scroll down to the technical explanation) and they do have dozens of uses (see the rest of this article) but they are bad at killing viruses and should not be used for this purpose. For killing viruses you need a shortwave UV light, and if you want to 'steralise' a wide area (e.g. a room, as opposed to a small object) then you need a large floor-standing light such as our UV-sterilization.

A good measure of whether you are buying a shortwave or longwave light is the price. For a shortwave light, £50.00 gets you a tiny lights (such as our UV-SW) which is designed for viewing gemstones. Larger viewing boxes (with shortwave lights) in which you can place larger mineral samples cost £200.00 to £400.00 (we don't sell these); the huge cabinets used in industry can treat large objects coming of a production line and cost £2000.00 to £3000.00 (we don't sell these). However, we do have a shortwave floor-standing UV light (ref.UV-sterilization) specifically designed for killing viruses, £149.00 including VAT.

A a good summary of the cheap 'wands' and 'boxes' came at at the International Conference on UV Disinfection for Air and Surfaces (source, Gareth John of the Lighting Industry Association). He tested a random sample of seven hand-held UV wands bought on the internet. “We’ve been looking at kill rates of 200Jm2, enough energy to ill 99% of known germs. A lot of devices didn’t deliver any UV-C [shortwave] at all. Plenty of them were just based on 405mn LEDs [longwave] so you get a sort of indigo glow [like our cheapest longwave UV torches]. For some wands that did deliver UV-C [shortwave] the dose was so weak that it would have taken ten minutes to reach the specified kill rate. These things tend to be marketed as something you can sweep across the surface for two minutes or so. The wands should also have gravity-sensing switches that turn off the light when it’s turned towards a user, to protect their eyes. However, only one of the seven wands had this switch and delivered enough UV-C [shortwave] to kill viruses quickly.”

I carried our my own I investigation into a cheap (£50.00) UV box advertised as, "8 UVC LEDs. 260-280nm, bleeps after 3mns to say the item is clear of bacteria". I asked the supplier for clarification (since I didn't think this was good enough to kill viruses) and got the reply, "We cannot guarantee that the device is killing viruses it only remove bacteria's. We don’t think we can be sure at 100% that if the item is contaminated it will be clean after the process. I’m sorry but the theme is very complicate, nobody wants to take responsibility for these 'medical' devices." In other words, cheap UV 'sterilisation boxes' might kill some bacteria sometimes and even less viruses even less of the time...but probably not.

An example of a shortwave (virus-killing) UV light that "works" but isn't good enough, is our £50.00 UV (UV-SW) - fine for checking a gemstone but not for steralising objects. For instance, place a ring under the light (the box is just about large enough to hold one ring) and ensure the UV is switched to 'shortwave'. We don't know how long the exposure should be, give it 10mns to be on the safe side; then turn it over and expose the other side for 10mns, then prop it up and expose the underneath of any stones for 10mns, it will then be clean of viruses, providing all parts have been exposed to the UV light. ALTERNATIVELY, give it a quick wipe with an alcohol-based sanitiser instead - that will take five seconds and will be just as effective. HOWEVER, if you already use one of these for gemstones, try this: after a customer has been trying on the ring, wipe them with sanitiser, but before a customer tries on a ring, put it in the UV box for a few seconds, just in inspire confidence.

For treating an entire room go for our large shortwave floor-standing UV light (ref.UV-sterilization) specifically designed for killing viruses, £149.00 including VAT.

USING UV LIGHT TO CHECK ANTIQUES

Ultra violet light (known is the U.S.A. as 'black light') is a very intense blue light, it is not visible to the human eye. Fluorescent-tube UV torches give off a very dull purple or violet glow. LED UV torches give off a dull lilac-blue. But the actual UV light is invisible, so the only way you can tell how effective it is - is to observe its effects.

If porcelain has been repaired, the missing part will have been 'rebuilt' or the crack glued, and then carefully repainted so that the colour matches. The colour will match perfectly in white light (e.g. daylight) but under UV light the new paint shows up a totally different shade. This applies to many decorative items, watch dials, dolls heads, faint signatures on letters, modern touch-up paint on old paintings. You have probably noticed a similar effect when looking at a car parked under a yellow street light, new paint on the car can show up quite a different shade, whereas in daylight it matches perfectly.

Other examples in the world of antiques and art: oil paintings, art on paper, marble, jade and ivory, all show characteristic patterns under UV light:

 

APPEARANCE

UNDER UV LIGHT

 

 

INDICATES

 

Oil Paintings

Bluish-white

Dark bluish-violet

Chartreuse glaze

Very small blue dots

Dark blotches

Bright yellow

 


Lining compound

Picture putty

Old varnish

Dust

Repairs, new signatures & overpainting

Recent touch-up with white lead or Naples yellow

 

 

Art on Paper

Bright areas

Smudged areas

Very faint writing

 

 


New patches of paper

Erasers

Erased signature

 

 

Marble

Strong purple

Mottled white

 

 

Fresh cut

Old Marble

 

 

Jade

Intense colour

Mottled

 

 

 

Fresh carved

Old Jade

 

Ivory

Purple

Yellow tone

 

 


Newly carved

Old Ivory

Amber

Some amber does fluoresce under UV light (notably blue amber) but so too will many substances so this test is not diagnostic.

The one reliable test is destructive, which is never recommended in gemmology. Touch the tip of a red-hot needle to it. If the burning smells acrid (like plastic) then it’s plastic; if the burning smells sweet, it’s amber.

Failing the burn-test, the best test is to drop it into heavily-salted water, amber will float, GENERALLY plastics sink. But there are many thousands of different plastics and I doubt that anyone has compared them all with amber, there might be some that float in salt water.

Uranium glass
(Vaseline Glass)

Glows spectacularly.

How does it work? It works by reflecting off the surface and showing up the difference in the chemical composition of the paint, or by showing characteristics of the item's basic chemical make-up.

Examples from every day life.

Many everyday substances glow under UV light: chlorophyll, teeth and antifreeze; olive oil, honey and ketchup; some cosmetics, some drugs, some postage stamps and some flowers.

There is starch in ordinary paper that makes it glow a vivid blue when lit with ultra violet light, but paper banknotes (which are made of a linen-type material, not paper) merely look 'slightly blue', hence UV lights are used as 'forged banknote detectors'; some paper banknotes (and all plastic banknotes) are printed with 'secret' marks, using UV-ink, which can only be seen under UV light - see some examples at the bottom of this page.

Additives in soap powders glow under ultra violet light, they are added for that very reason: UV light in daylight makes your white washing glow blue-white, which is why advertisers once used the catch line, 'washes whiter than white'.

Quinine is an ingredient of some drinks (e.g. tonic water), it gives them a distinctive bitter taste. Quinine glows under UV light. So the next time you are in a dimly-lit bar drinking a gin and tonic, shine your UV torch on it and see it glow.

Paint

Objects painted with UV paint (most of which are completely invisible under ordinary light) will glow under UV light.

- security-marking: e.g. with your postcode
- finding things: gold balls, tortoises, keys
- fun: makeup / face painting, spooky decorations
- theater and dance: dim the lights, light the stage with UV light, people and objects 'float' or appear headless
- leak detection: in car radiators and central heating systems, slow leaks (which don't appear wet) leave behind a residue that glows under UV light

Specialist Uses

- cross linkers and light boxes for viewing gels in biological laboratories
- germicidal UV lights for treating food before it goes on sale in the supermarkets
- welding operations
- curing uv-sensitive adhesives or uv-sensitive nail varnish ("gel-varnish")
- for inserting into pipes carrying water to fish tanks or fish ponds to kill algae and bacteria
- identification of some minerals and gemstones

Medical

- checking major skin wounds before operating (to show up bacteria). The presence of bacteria (porphryn molecules in the bacteria fluoresce red or blue-green under 405nm light) does not necessarily indicate an infection, the area must then be swabbed for further analysis.
- checking laboratory equipment after cleaning, UV can show up bacteria (we sold several of the UV-1 to a pharmaceutical company for this purpose)
- treating minor skin wounds, though there is a balance, here, between the benefit of stimulating healing and the risk of causing cancer, because they use very powerful short wave UV LIGHTS (which we don't sell).

Animals and plants

Humans need UV light (from sunlight) to produce vitamin D in the skin (nearly everyone in Northern Europe is vitamin-D-deficient in the winter due to lack of sunshine); in the summer it's popular to take advantage of prolonged UV light from the sun to burn the skin (it's called a suntan) - and if there's no sun there are tanning parlours in which you can be gently grilled under giant UV lights. Over-exposure to UV light can cause cancer but some exposure is essential, the solution is to go out in the sun (without sun cream) whenever possible but don't stay out long enough to get a tan.

In humans, the lens of the eye filters out UV light so that we cannot see it, but some people who have had eye operations (e.g. following a cataract operation) can see UV, it appears as a bluish or purplish glow. An example of this is in the paintings of water lilies by Monet following his cataract operation.

For most humans, the only way to see the effect of UV light is to use a UV torch. For instance, to detect lichen, shade it from daylight, shine a UV light on it, and see if it fluoresces white, bluish or orange - if so, it's probably lichen (try it out on Cladonia portentosa).

The same applies to freshly-spilt blood and urine, the human eye can't see it fluoresce in daylight, but you can see it glow under a UV light in the dark (used by the the forensic services at crime scenes).

Until recently it was thought that just a handful of animals could see UV light. It now seems that a great many can: many fish, reptiles and birds, and most mammals (though not primates). For instance, Kestrels can detect the urine trails of prey. For reindeer living in the Arctic urine appears black against the ice and snow as it absorbs UV light (urine is bad, it indicates nearby predators) whilst lichens appear white (lichens are good, reindeers eat them).

Here are four questions we get asked about UV light.

Question: so why do some UV lights appear really bright and others appear really dim?

Answer: many popular UV torches are 'popular' because they appear 'really bright' to the human eye, but the amount of actual UV light (which is not visible to the human eye) is very small, and its effect is very slight...to the point of being useless. By contrast, some UV torches appear dim to the human eye, but the amount of actual UV light is large and they work well. So when you look at all our UV lights, that is the main difference between one that costs £5.00 and one that costs £45.00.

Question: do I have to use a UV torch in the dark?

Answer: the effect is certainly spectacular if you go into a completely dark room, but usually it is sufficient to use it in dim light. Use a square of dark cloth, or the underneath of a table in a dim corner or even the inside of your jacket (you may have seen antiques dealers lifting their jacket and, it would seem, examining their armpit with a blue light). UV lights used in shops for testing banknotes include a shade. This is no different from using an ordinary torch, turn it on outside in bright sunlight and you won't see any effect.

Our two best models (UV-1 and UV-100) give out a huge amount of UV light and can be used in daylight, though not in direct sunlight. All UV lights work best in dim light, the dimmer the better.

Question: can't I just use a brighter UV torch, so that I don't have to use it in 'dim' light?

Answer: To an extent - yes. But it depends on the type (wavelength) of the light, if it is wrong (as with all the cheap UV torches) then it won't work, no matter how bright the UV light. Providing the type (wavelength) is right, then yes, a larger brighter UV torch will light up a wider area and work in brighter light, just the same as an ordinary torch. Scroll down or click here for recommendations.

Question: if I use it by shining the light on the surface of an antique, does that mean that it won't see below the surface?

Answer: Exactly so! If the item has been repaired and then re-glazed, a UV torch will be of no use, there will be no 'new' paint to see, the entire surface will be new. Similarly, you cannot see through layers of paint to see 'hidden paintings', UV light is not the same as x-rays. But you can see differences in surface paint, and that can indicate that a painting has been 'touched up'. Similarly, if a signature reacts differently to the surrounding work, it's clearly made of a different paint and may have been added.

Question: how do I see below the surface, e.g. to see an original drawing underneath a painting?
Answer: there are now a few ways of doing this, but none involve a simple UV light. For instance, by examining the fluorescence caused by x-rays rather than UV rays (XRF, x-ray fluorescence), or by using very specific wavelengths (colours) and analysing how it is reflected.

TECHNICAL EXPLANATION

The electromagnetic spectrum ranges from AM at one end (which includes Medium Wave and Long Wave radio) to Gamma Rays at the other. The measurements on the right of the chart, below, are the length of each wave section (from peak to trough) in nanometres (nm). 1nm = 0.000001mm.

As you see from the chart, "visible light" falls between microwaves and x-rays.

UV light, although close to x-rays, cannot penetrate the human body, its effect (for shortwave UV) is limited to burning the surface of skin (though it will cause damage to the eyes). Having your skin burnt by shortwave UV light is very popular, it's called 'getting a suntan', and if there is no sun, you can get yourself grilled under giant UV lights on a sun bed.

The tiny band we call 'light' ranges from infrared (the human eye can't detect far-infrared) to ultraviolet (the human eye can't detect ultraviolet):

And within this, the tiny bit we call 'ultraviolet light' looks like this:

365nm - 302mn - 254nm

UV light is divided into three types depending on the wavelength (these classifications are approximate, since there's nothing to distinguish the boundary from one to another):

"Longwave" UV, also known as UV-A, 400 to 300nm

"Midrange" UV, also known as UV-B, 315 to 280nm

"Shortwave" UV, also known as UV-C, 280 to 250nm

All UV light is invisible to the human eye, the UV torches you buy also give out some visible light and it is this you can see as a dull glow. Manufacturers of the cheaper torches ensure that the 'dull' glow isn't too dull, so that the user says, "Wow, this UV torch is so powerful!". Giving out some visible light is, of course, useful, otherwise you wouldn't know if your UV torch was switched on or off.

All the UV torches we sell are UV-A / longwave, they are not shortwave (shortwave burns skin and can damage eyes) but we do have one shortwave light encased in a 'safe' viewing box (UV-SW). Here is a list of how the various types (wavelengths) of UV-A / long wave lights compare. My standard test is on a British five pound note.

UVA
(see examples below)

410nm:
ON AN OLD (PAPER) TWENTY POUND NOTE - it has no effect on a twenty pound note, it does not show up any of the security markings.
ON A NEW (PLASTIC) FIVE POUND NOTE, scroll down to see pictures of how the UV lights react.

395nm:
ON AN OLD (PAPER) TWENTY POUND NOTE - the short lines are clearly visible but the "20" is not - not even if you use the it in the dark.
ON A NEW (PLASTIC) FIVE POUND NOTE, scroll down to see pictures of how the UV lights react.

SAFETY

UVA, SUMMARY. All our UV torches are UVA (see above). It is quite safe to point these at the skin, there is no way this type of UV can burn skin. However, please do not look directly into the light.

UVB and UVC (but mostly UVC) can burn the eyes or skin. When used in sun beds they are specifically designed to burn (tan) the skin, but the user must wear dark glasses to protect the eyes. Prolonged exposure, such as over-sunbathing, can lead to skin cancer. We do not sell UVB or UVC torches.

Susceptibility to skin being burnt by UV light depends on skin colour. Brown-skinned people are less sensitive to being burnt by UV light, melanin in the skin provides protection; completely black-skinned people have a variation, eumelanin, which gives even greater protection. This dates from the time when most humans lived in Africa. In populations that spread northwards, to lands where there wasn't much sunshine, fair skin evolved; it evolved to be more sensitive to UV light, because UV light is necessary for producing vitamin D in the skin.

PHOTOS SHOWING WHAT YOU SEE WITH UV LIGHT

In the photographs below I have illustrated each UV light by shining it on a British five pound banknote

- they were all photographed with the camera on the same setting, set to be 'dark' (see the first photo, below) so that it's easy to see how each note lights up under a UV torch

- you can see how effective the UV light is, for each torch, and you can also see how much 'ordinary' blue light each torch gives off, by how bright the banknote appears overall

- the photographs have not been enhanced in any way whatsoever.

CLICK ON EACH PICTURE TO SEE IT ENLARGED

This is what the banknote looked like without any UV light:

This is what the two bottles of liquid look like without any UV light, one contains tap water, the other contains tonic water from Tesco. Tonic water contains a tiny amount of quinine, which fluoresces (glows) under UV light.

 

THE PRODUCTS - AND WHAT YOU GET TO SEE WITH EACH UV TORCH

The products in this section are torches, except for this two items.

ref. UV-Decontaminator
£169.00

Click on the picture to see an example.
Click here to buy one of these.

Shortwave (254nm), will kill bacteria and viruses that are exposed to it, powerful enough to 'clean' a medium-size room (about 4m radius), see full details.

ref. UV-SW
£49.00 incl. VAT

UV (ultra violet) SW / shortwave LEDs, 254nm
UV (ultra violet) LW / longwave LEDs, 365nm
IR (infrared), laser, 980nm
and ordinary white light

Generally, you would use this for viewing gemstones or small mineral samples, because some react to LW UV light and SW UV light. The shortwave UV could be used for killing viruses, to steralise small items of jewellery (scroll to the top of this article for details). I think the IR (infrared laser) is for looking at stamps...but that really isn't my subject. The example in the picture is of a twenty pound note, so that you can compare the effect with the other items below.

The torch was a couple of inches away, I turned the floodlights off in the studio so that it was lit by the ambient light from the office.

420nm (estimated)

Spectacularly bright to the human eye but it doesn't emit much UV light. It does work, you can see the "5", but only just. These are popular at the antiques exhibitions where 'bargain hunters' just love the bright blue light, and reckon it must be good value at just £9.50. We even sell them, by the handful, to a market trader who resells them. I can see why these are so popular, they do work...just not very well.

UV-KR2
£3.90
incl. VAT

The torch was a couple of inches away, I turned the floodlights off in the studio so that it was lit by the ambient light from the office.

410nm (estimated)

The torch was less than an inch away, I turned the floodlights off in the studio so that it was lit by the ambient light from the office.

If you hold it close enough it does actually work, and it works well (good wavelength) but it only lights up a tiny area at a time. Good to carry in your pocket, it's tiny, and includes a keyring. In fact, if you have a serious use for a UV light, buy a good one for shop/workshop use, and get one of these to keep in your pocket for the unexpected buying trip.

UV-white
£29.50
incl. VAT

The torch was several inches away, I turned the floodlights off in the studio so that it was lit by the ambient light from the office.

365nm

One end is a UV torch with 1 super-powerful UV L.E.D. The other end is an extraordinarily powerful ordinary (white light) torch, which is useful for inspecting antiques, e.g. shining white light through fine porcelain or into narrow spaces. I do recommend using an ordinary (white light) torch in addition to UV, you are often surprised at what you see.
The UV light is not only of a good wavelength (365nm) but is also finely-focused, the result is a UV light that is so powerful it even works in daylight (though the effect is more spectacular in dim light). It's powered by a built-in rechargeable battery, one charge gives up to 6 hours of use.


ref. UV-1
(two models)

365nm


The wavelength is the same as the 'UV-white' above but it is brighter.
Powered by one rechargeable 18650 battery (battery supplied, charger supplied)
One charge lasts up to 8 hours of use.
Best wavelength combined with the most powerful spot light.

There are two models, one is 3 watt and one is 5 watt.

ref. UV-1, £35.00 incl. VAT
3 watt
Good for working indoors in average lighting and for anything you can physically handle – banknotes, porcelain, glass, paintings, prints, gemstones etc. This is so powerful it works well under ordinary indoor lighting and outside on dull days, you won’t have to build a shade or cover the item with a cloth (though a UV is always more spectacular in the dark).

The torch was several inches away, I turned the floodlights off in the studio so that it was lit by the ambient light from the office.

Supposing you are examining a huge painting or an entire collection of porcelain in a dimly-lit gallery (or a workshop where you can dim the lights) - this is with the torch held six feet away, very little light reaches the note, but it still works, you can still just about see the '5'. It would, of course, work well if you were using it in the dark.

Now let's make the conditions difficult, this is with the torch several inches away and the floodlights turned on in the studio, simulating a shop or exhibition stand under bright lights or a bright day outside (but not in direct sunlight). I did try moving the torch even further away (six feet) but that was just being silly, it didn't work at all. Generally, I do say that UV lights should be used in dim conditions, preferably in the dark, so the fact this this works in bright light, even close-up, is quite remarkable.

The torch was several inches away, it was aimed between the bottles, you can see how powerful the spot of light is, but the area covered is not enough to light up either of the bottles, all you can see the reflections on one of the bottles (because the visible light is so bright).

The torch was several inches away., it was aimed at the left bottle (tap water), the visible light illuminates the bottles (and the bottle appears blue because the visible light is blue); the light is shining slightly from the the right and, as you would expect, it lights shines through the water onto the wall behind. The UV light does nothing.

The torch was several inches away., it was aimed at the right bottle (tonic water), it glows a vibrant blue (more dramatic in real life, I couldn't get the 'glow' to show on the photo). Compare this with the previous photo, above.

ref. UV-1-5W, £45.00 including VAT
5 watt
The extra power of the 5 Watt combined with its powerful spotlight is good for use outside in broad daylight (though not direct sunlight) or indoors under bright lights. As above, you won’t have to build a shade or cover the item with a cloth) - though a UV is always more spectacular in the dark.

The torch was several inches away. Close-up (and in dim lighting) there really isn't any difference between the two models. But if we move the torch

Supposing you are examining a huge painting or an entire collection of porcelain in a dimly-lit gallery (or a workshop where you can dim the lights) - this is with the torch held six feet away, it's certainly not as effective as holding it a few inches away but, amazingly, it still works well.

The torch was several inches away, it was aimed between the bottles, you can see how much more powerful than the 3W model the spot of light is, the area covered is almost bright enough to fluoresce the tonic water in addition to lighting up the tap water.

The torch was several inches away., it was aimed at the left bottle (tap water), the visible light illuminates the bottles (and the bottle appears blue because the visible light is blue); the light (visible light) is far brighter than the 3W model, though the UV light does nothing.

The torch was several inches away., it was aimed at the right bottle (tonic water), it glows a vibrant blue (more dramatic in real life, I couldn't get the 'glow' to show on the photo); compare this with the effect on the 3W model (see previous item, above).

390-395nm

The wavelength ("blue-ness) isn't as good as the UV-1 models, above, as you can see from the pictures, but for brightness it's every bit as powerful as the very best model (UV1-5w) and it costs dramatically less.

The torch was several inches away.

The torch was six feet away, compare this with the UV-1 models above.

Now let's make the conditions difficult, this is with the torch several inches away and the floodlights turned on in the studio, simulating a shop or exhibition stand under bright lights or a bright day outside (but not in direct sunlight). I thought, at first, that with a bit of imagination you could almost see the '5', but on closer examination - you can't. Despite this being incredibly wide angle (i.e. it lights up a huge area) the power combined with the wavelength isn't good enough for use in bright conditions. Compare this with the UV-1 models above. However, there is one huge difference between this uv-100 and the UV-1 models: price!

The torch was several inches away, it was aimed between the bottles.
You will notice that
- there is no 'spot' of light, this is a wide-angle UV torch, the light illuminates both bottles at once (and a large area around them!)
- unlike the uv-1 torches, above, there is a lot of visible light illuminating the left hand (tap water) bottle
- the effect on the right (tonic water) bottles is clear, but not nearly as spectacular as with the UV-1 torches, above.

The advantage of this torch is that it's wide-angle, you can 'sweep' a large area with it, you can use it for UV-effects (to light up an entire showcase, market stall); or 'in the field' hunting for plant, animal or mineral specimens (though you've have to go out at dusk or at night); or use two or three torch to light up a dance floor. It's by far the brightest of all the UV torches though, as you see, this does not mean it's the most effective, I'd recommend the UV-1 models for use in daylight because the wavelength (blue-ness) is better.

There are many dozens of items that fluoresce (glow) under UV light, scroll to the top of this page to read about them. There are even items that fluoresce 'accidentally', i.e. the manufacturers just happened to use a material that fluoresces, as you can see from my last photo: Lesley's shoe laces.

ref.UV
£7.50
incl. VAT

The torch was a couple of inches away from the banknote, click on the picture. This works well, it covers a far larger area than the keyring UV lights, it's as good as an average LED UV torch, it's not as good as the best LED UV torches. The reason this is so cheap is that it is SO 1990s, everyone wants LED lights these days, nobody wants old technology, even if it works well. Only a few remaining, I certainly won't be replacing these once they are sold.

365-370nm


It works fine. However, it's a fluorescent light not an LED light. And 'fluorescent' is just so 1990s!

uv-note-checker
£15.00
incl. VAT

The banknote rests under the shade, click on the picture.

365-370nm

All the other models on this page are battery-powered, this one is mains-only,
for testing banknotes, includes a shade

uv-mains 20W
£179.50
incl. VAT

365nm

Dimensions: 180 x 140 x 140mm (7 x 5.5 x 5.5in)

Weight: 1.2kg


Mains-powered (20 Watt), IP65 (it can be used outside), 20 LEDs.

You may prefer a handheld battery model for carrying around in your pocket, but a large mains model, like this, is better for many purposes: display (exhibitions and museums, small theatre stages); renovation (workshops); inspection (galleries and museums).

For lighting a showcase on an exhibition stand. For instance, if you deal in antique glass, everyone will ask why some of the items are glowing bright green!
For examining large paintings or manuscripts.
For renovating porcelain (matching the colours) under UV light without having to turn the lights out.
- many other uses, see the chart at the top of this file.

It's bright enough to flood an entire room with UV light, it's so bright that you can leave the lights on (though UV lights like thesealways work better in the dark - see the test results below).

The photos above were taken from just a couple of feet away, but our tests show it to be effective over the following range:

Fluorescent liquid (tonic water) under bright office lights: 5' (1.5m)
Fluorescent liquid (tonic water) in dim lighting: 10' (3m)
Fluorescent liquid (tonic water) in the dark: 34' (10m)

A five pound note under bright office lights: 7' (2.1m)
A five pound note in dim lighting: 11' (3.3m)
A five pound note in the dark: 21.5' (6.5m)

If you want to know how this compares with the best handheld UV torches - there's no comparison, none of them work at these distances.

uv-mains 50W
£229.00
incl. VAT

365nm

Dimensions: 285 x 230 x 170mm (11.25 x 9 x 6.5in)

Weight: 2.7kg


Mains-powered (20 Watt), IP65 (it can be used outside), 20 LEDs.

THE most powerful mains UV light.

For special effects and theatre use.
For lighting a room in an exhibition (glass, porcelain, art with UV-effects)
For examining large paintings or manuscripts.
For renovating porcelain (matching the colours) under UV light without having to turn the lights out.
- many other uses, see the chart at the top of this file.

It's bright enough for a large room or stage, it's so bright that you can leave the lights on (though for stage work it's best to turn the other lights off).

The photos above were taken from just a couple of feet away, but our tests show it to be effective over the following range:

Fluorescent liquid (tonic water) under bright office lights: 13' (4m)
Fluorescent liquid (tonic water) in dim lighting: 31' (9.5m)
Fluorescent liquid (tonic water) in the dark: 34' (10m) *

A five pound note under bright office lights:12' (3.2m)
A five pound note in dim lighting: 15' (5m)
A five pound note in the dark: 25.5' (7.5m)

* probably further, difficult to know, our office is only 23' (10m) long.

If you want to know how this compares with the best handheld UV torches - there's no comparison, none of them work at these distances.

 

MORE EXAMPLES

Click on each picture to see it greatly enlarged

A CREDIT CARD

UV-100
I've used a strip of paper to cover the card number, you notice how it glows white.

UV9
Please believe me, the "M" and "C" are not visible, not even if you look closely. If they were, they would show up the same brightness as the strip of paper.
You will also notice that the strip of paper (the same card / strip of paper as pictured above) shows up a dull blue rather than bright fluorescent-white.

A RUBY

Finally, if you want a magnifier with a UV light, be extra careful which one you buy. Below are two sets of photographs showing a ruby, one with an unbranded 10X loupe with UV light (the size happens to be 10X21), one with the QUICKTEST 10X loupe with UV light. These loupes also have a rim of ordinary (white) light, you push the switch one way for white light, the other way for ultra violet light.

For a closer view, click on each of the two images.

365-370nm:
Secondly, below, the QUICKTEST 10X20 loupe with UV light (all four pictures are of the same loupe).
Top left: the loupe.
Bottom left: note how there is only one ultraviolet light, not nearly as pretty as the rim of lights.
Top right: a ruby with the white light switched on, the ruby is dark, the light reflects off the surface.
Bottom right: the same ruby with the white light off and the ultra violet light switched on, it glows spectacularly. That's because there is a huge amount of ultraviolet light, even though the human eye cannot see it.

Please note that using ultraviolet light is not a 'test' for ruby, because some ruby (especially Burma ruby) fluoresces brilliantly, some ruby does not fluoresce at all; the above is just to show you the difference between the quality of ultraviolet lights (scroll up to read all about wavelengths).